
University of Virginia cs2102: Discrete Mathematics 12 October 2017

Class 14: Invariant Principle

Schedule

Problem Set 6 (will be posted after class today) is due 20 October (Friday) at 6:29pm.

Exam 1 was returned Tuesday. If you did not pick yours up yet, you can get it after class today. We
will start charging exponentially-increasing storage fees for inexcusably unclaimed exams starting after
Prof. Mahmoody’s office hours Monday.

State Machines (review from Class 13)

A state machine, M = (S, G : S×S, q0 ∈ S), is a binary relation (called a transition relation) on a set (both
the domain and codomain are the same set). One state, denoted q0, is designated as the start state.

An execution of a state machine M = (S, G ⊆ S × S, q0 ∈ S) is a (possibly infinite) sequence of states,
(x0, x1, · · · , xn) where (1) x0 = q0 (it begins with the start state), and (2) ∀i ∈ {0, 1, . . . , n−1}. (xi, xi+1) ∈ G
(if q and r are consecutive states in the sequence, then there is an edge q → r in G).

A state q is reachable if it appears in some execution.

A preserved invariant of a state machine M = (S, G ⊆ S × S, q0 ∈ S) is a predicate, P , on states, such that
whenever P (q) is true of a state q, and q → r ∈ G, then P (r) is true.

Bishop State Machine

S = {() | r, c ∈ N} G = {(r, c) → (r′, c′) | r, c ∈ N ∧ (∃d ∈ N+ such that r′ = r d ∧ r′ ≥ 0 ∧ c′ =
c d ∧ c′ ≥ 0} q0 = (0, 2)

What states are reachable?

“Progress” Machine

S = {(x, d) |x ∈ Z, d ∈ {F, B}}G = {(x, F)→ (x+1, B) |x ∈ Z}∪{(x, B)→ (x−2, F) |x ∈ Z} q0 = (0, F)

Which states are reachable?

cs2102: Class 14: Invariant Principle 2

Preserved Invariants

A predicate P (q) is a preserved invariant of machine M = (S, G ⊆ S × S, q0 ∈ S) if:

∀q ∈ S. (P (q) ∧ (q → r) ∈ G) =⇒ P (r)

What are some preserved invariants for the (original) Bishop State Machine?

Invariant Principle. If a preserved invariant of a state machine is true for the start state, it is true for all
reachable states.

To show P (q) for machine M = (S, G ⊆ S × S, q0 ∈ S) all q ∈ S, show:

1. Base case: P ()
2. ∀s ∈ S. =⇒

Prove that the original Bishop State Machine never reaches a square where r + c is odd.

cs2102: Class 14: Invariant Principle 3

Slow Exponentiation

def slow_power(a, b):
y = 1
z = b
while z > 0:

y = y * a
z = z - 1

return y

S ::= N× N G ::= {(y, z)→ (y · a, z − 1) | ∀y, z ∈ N+} q0 ::= (1, b)

Prove slow_power(a, b) = ab.

Fast Exponentiation

This is the algorithm from Section 6.3.1 written as Python code:

def power(a, b):
x = a
y = 1
z = b
while z > 0:

r = z % 2 # remainder of z / 2
z = z // 2 # quotient of z / 2
if r == 1:

y = x * y
x = x * x

return y

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 UVA cs2102 Course Staff

https://uvacs2102.github.io/

	Schedule
	State Machines (review from Class 13)
	Bishop State Machine

	
	``Progress'' Machine
	Preserved Invariants

	
	Slow Exponentiation
	
	Fast Exponentiation

