University of Virginia cs2102: Discrete Mathematics 12 October 2017

Class 14: Invariant Principle

Schedule

Problem Set 6 (will be posted after class today) is due 20 October (Friday) at 6:29pm.

Exam 1 was returned Tuesday. If you did not pick yours up yet, you can get it after class today. We
will start charging exponentially-increasing storage fees for inexcusably unclaimed exams starting after
Prof. Mahmoody’s office hours Monday.

State Machines (review from Class 13)

A state machine, M = (S,G : S x S, qy € S), is a binary relation (called a transition relation) on a set (both
the domain and codomain are the same set). One state, denoted ¢, is designated as the start state.

An execution of a state machine M = (S,G C S x S,qp € S) is a (possibly infinite) sequence of states,
(o, 1, -, x,) Where (1) xy = qo (it begins with the start state), and (2) Vi € {0,1,...,n—1}. (24, xi41) € G
(if ¢ and r are consecutive states in the sequence, then there is an edge ¢ — r in G).

A state q is reachable if it appears in some execution.

A preserved invariant of a state machine M = (S,G C S x S, qp € S) is a predicate, P, on states, such that
whenever P(q) is true of a state ¢, and ¢ — r € G, then P(r) is true.

Bishop State Machine

S = {()|r,c € N} G = {(r,¢) = (',¢)|r,c € NA (Id € Nt such thatr’ = r dAT > 0N =
c__dANcd >0}q =(0,2)

What states are reachable?

“Progress” Machine

S={(z,d)|zr€Z,de{F,B}}G={(z,F) = (z+1,B) |z € Z}U{(2,B) = (r—2,F) |z € Z} ¢o = (0, F)

Which states are reachable?

¢s2102: Class 14: Invariant Principle 2

Preserved Invariants
A predicate P(q) is a preserved invariant of machine M = (S,G C S x S, qp € S) if:

Vge S.(P(¢g)N(qg—1)€eG) = P(r)

What are some preserved invariants for the (original) Bishop State Machine?

Invariant Principle. If a preserved invariant of a state machine is true for the start state, it is true for all
reachable states.

To show P(q) for machine M = (S,G C S x S,qo € S) all ¢ € S, show:

1. Base case: P()
2. Vse S. ==

Prove that the original Bishop State Machine never reaches a square where r + ¢ is odd.

¢s2102: Class 14: Invariant Principle 3

Slow Exponentiation

def slow_power(a, b):

y =1

z =D

while z > O:
y=y *a
z =2z -1

return y

Su=NxNG = {(y,2) = (y-a,2—1)|Vy,z € N} go == (1,b)

Prove slow_power(a, b) =al.

Fast Exponentiation
This is the algorithm from Section 6.3.1 written as Python code:

def power(a, b):

X = a
y=1
z=D>

while z > O:
r=2z7Y%2 # remainder of z / 2
z =2 // 2 # quotient of z / 2
if r ==
y=x*y
X = X %X
return y

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 UVA ¢s2102 Course Staff

https://uvacs2102.github.io/

	Schedule
	State Machines (review from Class 13)
	Bishop State Machine

	
	``Progress'' Machine
	Preserved Invariants

	
	Slow Exponentiation
	
	Fast Exponentiation

