
University of Virginia cs2102: Discrete Mathematics 17 October 2017

Class 15: Recursive Data Types

Schedule

You should read MCS Chapter 7 this week.

Problem Set 6 is due 20 October (Friday) at 6:29pm.

Proving Correctness

def slow_power(a, b):
y = 1
z = b
while z > 0:

y = y * a
z = z - 1

return y

We model the Python program with a state machine:

S ::= N× N
G ::= {(y, z)→ (y · a, z − 1) | ∀y, z ∈ N+}
q0 ::= (1, b)

It is important to remember this is a model. It does not capture many important aspects of execution of a
real Python program. In particular, it only models inputs in N, when the actual inputs could be other
types in PYthon. It also assume all math opderations work mathematically, not Pythonically.

To prove partial correctness, we show P (q = (y, z)) := y = ab−z is a preserved invariant. Then, we show
that it holds in state q0. Finally, we show that in all final states, y = ab.

Invariant is Preserved: We need to show that ∀q ∈ S.∀t ∈ S.(q, t) ∈ G =⇒ P (q) =⇒ P (t).

1. q = (y, z). P (q = (y, z)): y = ab−z.
2. If there is an edge from q to t, that means t = (y · a, z − 1) and z ≥ 1 since this is the only edge from
q in G.

3. We show P (t = (y · a, z − 1)) holds by multiplying both sides of P (q) by a:

ya = (ab−z) · a = ab−z+1 = ab−(z−1).

Invariant holds in q0: q0 = (1, b). So, we need to show P (q0 = (1, b)): 1 = ab−b. This holds since a0 = 1.

Final states: All states where z ≥ 1 have an outgoing edge, but no states where z = 0 do. So, the final
states are all of the form (α, 0). If a final state is reachable from q0, the invariant must hold since we
proved it is preserve. Hence, in the final state (α, 0) we know α = ab.



cs2102: Class 15: Recursive Data Types 2

This proves partial correctness: if the program terminates, it terminates in a state where the property
(y = ab is satisfied). To prove total correctness we also need to know the execution eventually reaches a
final state.

We prove this by showing that from any initial state q0 = (1, b), the machine will reach a final state
qf = (y, 0) in b steps. The proof in class used the Well Ordering Principle. You could also prove this using
regular Induction.

Pairs

What is the difference between scalar data and compound data structures?

Definition. A Pair is a datatype that supports these three operations:

make_pair : Object×Object→ Pair
pair_first : Pair→ Object
pair_last : Pair→ Object

where, for any objects a and b, pair_first(make_pair(a, b)) = a and pair_last(make_pair(a, b)) = b.

def make_pair(a, b):
def selector(which):

if which:
return a

else:
return b

return selector

def pair_first(p):
return p(True)

def pair_last(p):
return p(False)

Lists

Definition (1). A List is either (1) a Pair where the second part of the pair is a List, or (2) the empty list.

Definition (2). A List is a ordered sequence of objects.

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 UVA cs2102 Course Staff

https://uvacs2102.github.io/

	Schedule
	Proving Correctness
	Pairs
	Lists

