Class 17: Infinite Sets

Schedule

Before Thursday, everyone should have finished reading MCS Chapter 8. **Problem Set 7** is due **Friday (27 Oct) at 6:29pm**.

Infinite Sets

Finite Cardinality. The cardinality of the set

 $\mathbb{N}_k = \{ n | n \in \mathbb{N} \land n < k \}$

is *k*. If there is a *bijection* between two sets, they have the same cardinality. (Class 9) Does this definition tell us the cardinality of \mathbb{N} ?

Definition. A set *S* is *infinite* if there is no bijection between *S* and any set \mathbb{N}_k (as defined above). Show that \mathbb{Z} is infinite.

Cardinality of Infinite Sets

Equal Carinalities. We say |A| = |B| for arbitrary sets A, B (and say that they have the same cardinality), if there is a bijection between A and B.

Comparing Cardinalities. We say $|B| \le |A|$ for arbitrary sets *A*, *B* (and say that *B*'s cardinality is less than or equal to the cardinality of *A*), if there is a *surjective function* from *A* to *B*.

Show that |A| = |B| implies $|B| \le |A|$ and $|A| \le |B|$. Be careful as these sets might not be finite, in which case we cannot simply use natural numbers to denote their cardinalities.

Schröder-Bernstein Theorem: If $|A| \le |B|$ and $|B| \le |A|$, then there is a bijection between *A* and *B*, namely |A| = |B|. (Not proven in cs2102; this is somewhat tricky to prove! For a full proof, see the linked lecture notes.)

Other Definitions for Infinite Sets

Dedekind-Infinite. A set *A* is *Dedekind-infinite* if and only if there exists a *strict subset* of *A* with the same cardinality as *A*. That is,

 $\exists B \subset A$. $\exists R$. *R* is a bijection between *A* and *B*.

Recall the definition of strict subset:

 $B \subset A \iff B \subseteq A \land \exists x \in A \ . \ x \notin B.$

Third Definition. A set *S* is *third-definition infinite* if $|S| \ge |\mathbb{N}|$ (as defined on the previous page). Namely, there is a *surjective function* from *S* to \mathbb{N} .

Are the above three definitions of (standard) *infinite* and *Dedekind-infinite* and *third-definition infinite* equivalent definitions?

Definition. A set *S* is *countable* if and only if there exists a surjective function from \mathbb{N} to *S*. (That is, ≤ 1 arrow out from \mathbb{N} , ≥ 1 arrow in to *S*.) Using our notation defined above, this means $|S| \leq |\mathbb{N}|$.

Prove that these sets are countable: \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} (rationals), \emptyset , $\mathbb{N} \cup (\mathbb{N} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{N} \times \mathbb{N})$, all finite sequences of elements of \mathbb{N} .

Definition. A set *S* is *countably infinite* if and only if it is *countable* and it is *infinite* (according to standard definition).

Must a countable set that is Dedekind-infinite be countably infinite?

Using the definition of countable, and third definition of infinite, show that S is countably infinite if and only if there is a bijection between S and \mathbb{N} . (We might as well use this definition in the future.)