Class 18: Spooky Infinities

Schedule

Problem Set 7 is due Friday (27 Oct) at 6:29pm.

Exam 2 is two weeks from today (November 9, in class). We will post more information about Exam 2 soon.

Countable and Uncountable Sets

Definition. A set *S* is *countably infinite* if and only if there exists a bijection between *S* and \mathbb{N} . **Definition.** A set *S* is *uncountable*, if there exists no bijection between *S* and \mathbb{N} . The **power set** of *A* (pow(*A*)) is the set of all subsets of *A*:

$$B \in \mathbf{pow}(A) \iff B \subseteq A.$$

For all finite sets S, $|pow(S)| = 2^{|S|}$.

For all sets S, |pow(S)| > |S|.

Prove $pow(\mathbb{N})$ is uncountable.

bitstrings = $\forall n \in \mathbb{N}. \{0, 1\}^n$.

Ordinal and Cardinal Numbers

 ω is the *smallest infinite ordinal*. The first ordinal after $0, 1, 2, \cdots$. What is the difference between an *ordinal* and *cardinal* number?

What should 2ω mean?

Is InfiniteBitStrings = $\{0, 1\}^{\omega}$ countable?

Prove the number of real numbers in the interval [0, 1] is uncountable.