Class 19: Reviewing Infinities

Schedule

Problem Set 8 is now due on Friday, Nov 3.See PDF Version for Notes.

Comparing sets Recap:

Definition. Sets *A* and *B* have the same cardinality, denoted by |A| = |B| if there is a bijection between *A* and *B*.

Definition. Cardinality of *A* is at least as big as cardinality of *B*, denoted by $|A| \ge |B|$ if and only if *either* of the following is true (they are equivalent).

- 1. There is a surjective function from *A* to *B*.
- 2. There is a total injective function from *B* to *A*.

Infinite Sets Recap

Definition. A set *C* is *infinite* if and only if *either* of the following happens (they are all equivalnet).

- 1. Dedekind-infinite: There is a bijection between *C* and a strict subset *B* of *C*.
- 2. There is *no* bijection between *C* and any \mathbb{N}_k for any natural number $k \in \mathbb{N}$.
- 3. There exists a surjective function from C to \mathbb{N} .
- 4. There exists a total injective function from \mathbb{N} to *C*.

Definition. A set *C* is *countable* if and only if there exists a surjective function from \mathbb{N} to *C*. (That is, ≤ 1 arrow out from \mathbb{N} , ≥ 1 arrow in to *C*.)

Definition. A set *C* is *countably infinite* if and only if there exists a bijection between *C* and \mathbb{N} .

Cantor's Theorem

For **all** sets, S, |pow(S)| > |S|. What does this mean for $|\mathbb{N}|$? Show there is a bijection between [0, 1] and $pow(\mathbb{N})$.

What is the cardinality of all the real numbers? Show a bijection between [0, 1] and all real numbers. Hint, first show a bijection between (0, 1) and real numbers, and then a bijection between [0, 1] and (0, 1).