Class 21: Review

Exam 2

Exam 2 will be in class on Thursday, 9 Nov. See Class 20 notes for details on the exam.

Main Topics for Review

Today we review the topics that we learned after Exam 1 with the exception of number theory (which will not be included in Exam 2).

- State Machines and how to argue about correctness of programs.
- Recursive Definitions and how to prove statements about them using structural induction.
- Infinite Sets and Cardinalities, and how to show sets are finite, infinite, countable, or uncountable.

State Machines

 $M = (S, G \subset S \times S, q_0 \in S)$ defines a state machine.

P is a *preserved invariant* if:

 $\forall q \in S.(P(q) \land (q \to r) \in G) \implies P(r)$

Invariant Principle: If *P* is a *preserved invariant* and $P(q_0)$ is true, then property *P* is true for all **reachable states**.

Proving Program Correctness

To prove a program *R* produces the correct output:

- 1. Model it as a state machine, M.
- 2. Show that M eventually terminates.
- 3. Show partial correctness:
 - Find a suitable preserved invariant *P* for *M*.
 - Show that P(q) for all final states implies the output correctness property. (Final states are states where the execution terminates.)
 - Show $P(q_0)$ the perserved invariant holds for the start state.

Recursive Data Types

To define a recursive data type *D*:

- Define one or more **base** objects, $d \in D$.
- Define one or more **constructor** cases that specify how to construct a new object $d \in D$ from one or more previoulsy-constructed objects, $d_1, d_2, \ldots \in D$.