Class 3: Well-Ordering Principle

Schedule

This week, you should read MCS Chapter 2 and MCS Chapter 3 (at least through the end of Section 3.4).

Problem Set 1 is due Friday at 6:29pm.

Office hours started Monday afternoon. See the course calendar for the full office hours schedule.

Notes and Questions

What properties must a sensible ordering function have?

Definition. A set is *ordered* with respect to an ordering relation (e.g., <), if two things hold. (1) Every pair of inequal elements a, b in A either satisfy a < b or b < a. (2) for every three elements a, b, and c, a < b and b < c imply that a < c (this is called *transitivity*).

Definition. An ordered set, with respect to an ordering relation (e.g., *<*), is *well-ordered* if all of its non-empty subsets has a minimum element.

Which of these are well-ordered?

- The set of non-negative integers, comparator <.
- The set of integers, comparator <.
- The set of integers, comparator |a| < |b|.
- The set of integers, comparator if $|\mathbf{a}| = |\mathbf{b}|$: a < b, else: |a| < |b|.
- The set of national soccer teams, comparator winning games.

Prove the set of positive rationals is *not* well-ordered under <.

Provide a comparison function that can be used to well-order the positive rationals.

Template for Well-Ordering Proofs (Section 2.2)

To prove that P(n) is true for all $n \in \mathbb{N}$:

- 1. Define the set of counterexamples, $C ::= \{n \in \mathbb{N} | NOT(P(n)) \}$.
- 2. Assume for contradiction that *C* is _____
- 3. By the well-ordering principle, there must be ______, $m \in C$.
- 4. Reach a contradiction (this is the creative part!). One way to reach a contradiction would be to show P(m). Another way is to show there must be an element $m' \in C$ where m' < m.
- 5. Conclude that *C* must be empty, hence there are no counter-examples and P(n) always holds.

Example: Betable Numbers. A number is *betable* if it can be produced using some combination of \$2 and \$5 chips. Prove that all integer values greater than \$3 are betable.

Example: Division Property. Given integer *a* and positive integer *b*, there exist integers *q* and *r* such that: a = qb + r and $0 \le r < b$.

The whole problem with the world is that fools and fanatics are always so certain of themselves, and wiser people so full of doubts. Bertrand Russell

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 UVA cs2102 Course Staff