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Exam 2

Revisiting Exam 1

1. (Average: 6.1, Median: 7) Explain why the set of real numbers x where −1 ≤ x ≤ 1 is not well
ordered by <. (Expected answers will give a good intuitive reason; better-than-expected answers
will provide a convincing proof.)

A well-written intuitive argument that there is no smallest real number above -1 would be worth 10
points. For 10 points, the intuitive answer must mention that there is a subset of the given set that
has no minimum.

Proof by contradiction: Assume by contradiction that, R1, the set of real numbers between -1 and 1
is well ordered. By the definition of a well-ordered set, all non-empty subsets of R1 have a minimum
element. Consider S = R1 −−1. We know S ⊂ R1 since every element of S is an element of R1.

We show that R1 is not well-ordered by contradiction. By the assumption that R1 is well ordered, since S
is a non-empty subset of R1 it must have a minimum, m.

Define m∗ = (−1 + m)/2. Then m∗ < m since m > −1 and the average of −1 and m must be greater
than−1. But m∗ ∈ S since it is a real number between -1 and 1. This contradicts the assumption that m
is the minimum of S. This contradicts the assumption that R1 is well-ordered, since we have shown a
nonempty subset of R1 that has no minimum.

State Machines and Invariants

2. (Average 6.8, Median 7) Suppose M = (S, G ⊆ S × S, q0 ∈ S) is a state machine, and R is the set
of reachable states in M . For each of the statements below, indicate if the implication stated is
valid (must always be true) or invalid (might be false). Provide a short justification supporting your
answer.

a. If R = M (namely all the states are reachable), then G ∪ {(q0, q0)} is a surjective relation.

Circle one: Valid or Invalid

Justification: Since all the states are reachable, there is at least one arrow into every state in
G (except the start state q0). Thus, G ∪ {(q0, q0)} is a surjective relation because it includes an
arrow into q0, as well as all the arrows in G which must include at least one arrow into every
other state.

b. If P (q) is a preserved invariant for machine M = (S, G, q0), and P (q) is false for some reachable
state q ∈ R, then P (q0) is false.

Circle one: Valid or Invalid

Justification: If P (q0) is true, by the invariant principle, P (q) must hold for all q ∈ R. So, it must
be the case that P (q0) is false if there is any reachable state where P (q) is false.
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c. If R is a finite set, then G is a finite set as well. (Note that as a subset of S × S, G is a set itself.)

Circle one: Valid or Invalid

Justification: Here’s one counterexample: S = N, G = {(n, 2n) |n ∈ N, n ≥ 1}. G is infinite, but
R = {0} since q0 = 0 and there are no edges from 0.

Recursive Data Types

Consider the recursive data types, NBF (short for Nand-Based Formula) defined by:

– Base: True is a NBF.
– Base: False is a NBF.
– Constructor: for all NBF objects f1, f2, NAND(f1, f2) is a NBF.

The Value of a NBF, f , is logical Boolean value of it when evaluated as a logical formula based on NAND
gates. So, for example,

Value(NAND(NAND(True, True), False)) = True.

3. (Average 5.9, Median 6) Provide a precise and complete definition of Value for all NBF objects.

Value(True) = True
Value(False) = False
Value(NAND(f1, f2)) = NAND(Value(f1), Value(f2))

4. (Average 6.8, Median 8) Prove by structural induction that for all NBF objects f it holds that

Value(NAND(f, f)) = ¬(Value(f))

where ¬(Z) is simply the logical negation of the logical (True or False) variable Z. Note that for this
problem it is important that you specify all the required steps of the structural induction.

Prove by structural induction:

1. Base cases: True, False

a. f = True: Value(NAND(True, True)) = False = ¬(Value(True)) = ¬(True)
b. f = False: Value(NAND(False, False)) = True = ¬(Value(False)) = ¬(False)

2. Constructor case: f = NAND(f1, f2).
We need to show that Value(NAND(f, f)) = ¬(Value(f)). By the definition of Value,
Value(f ) could either be False or True. By the definition of Value, Value(NAND(f, f)) =
NAND(Value(f), Value(f)). The value of Value(f) is either True and False. So, we need to
cover two cases, and show the equality holds for both: NAND(False, False) = ¬(False) is True
since NAND(False, False) = True, and NAND(True, True) = ¬(True) is also true.

Note that we did not need to use the induction hypothesis at all in the constructor case proof (that
is, it never depends on the property holding for f1 or f2, only knowing that Value(f) for any NBF
object is True or False. So, we didn’t really need to prove the base case!
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Program Verification

Consider the Python program below, that returns the sum of the elements of the input list p. You may
assume p is a non-empty list of natural numbers.

def sum_elements(p):
x = 0
i = len(p)
while i > 0:

i = i - 1
x = x + p[i]

return x

5. (Average 8.9, Median 9) Complete the definition of the state machine below that models
sum_elements.

S = {(x, i) |x, i ∈ N}
q0 = (0, len(p))
G = {(x, i)→ (x′, i′) |

i > 0∧
i′ = i− 1 ∧
x′ = x + p[i - 1] }

6. (Average 9.8, Median 10) Prove that the state machine (from problem 5) always terminates.

Since we start in state (0, len(p)) and each transition decreases the value of the i part of the state
by one, it will reach i = 0 in len(p) steps. There are no transitions from a state where i ≤ 0, hence
the machine must eventually terminate.

7. (Average 7.1, Median 7) Prove that sum_elements, as modeled by the state machine from Problem
6, always returns the sum of the elements of that list. (Hint: for this goal, you need to (1) find an
appropriate invariant property (and prove that it is indeed a preserved invariant), (2) show that the
property at a final ending state implies correctness, and (3) it also holds over the original state.)

We prove the sum correctness using the Invariant Principle. For the preserved invariant we choose:

P (q = (x, i)) ::= x = p[i] + p[i + 1] + . . . + p[len(p)− 1].

Our goal is to prove that in all final states, x = p[0] + p[1] + . . . + p[len(p)− 1]. So, we need to show
that (1) P is a preserved invariant for M , that (2) P (final) =⇒ x = the sum of all elements in p,
and (3) the P (q0) is true.

(1) We need to show P is a preserved invariant. All transitions are from (x, i)→ (x + p[i− 1], i− 1)
when i > 0. So, P (q = (x, i)) = x = p[i] + p[i + 1] + . . . + p[len(p)− 1]. Because the transition is
q → r = (x + p[i−1], i−1]), we can add p[i−1] to both sides: x + p[i−1] = (p[i]+ p[i +1]+ . . . +
p[len(p)− 1]) + p[i− 1] = p[i− 1] + p[i] + . . . + p[len(p)− 1). This is P (r = (x + p[i− 1], i− 1)),
so we have shown the invariant P is preserved.
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(2) As we argued for 6, the final states are states where i = 0. So, if we are in a final state qf = (x, 0),
P (qf ) = x = p[0] + p[1] + . . . + p[len(p)− 1]. This is the correctness property we need, so we
have satisfied P (final) =⇒ x = the sum of all elements in p.

(3) P (q0 = (0, len(p))) is true since x = 0 = empty sum. The sume is empty since it is p[i] + p[i +
1] + . . . + p[len(p)− 1], and i = len(p) which is greater than the last index.

Infinite Cardinalities

8. (Average 9.0, Median 10) For each set defined below, answer if the set is = Finite or Countably
Infinite or Uncountable. Support your answer with a convincing and concise justification. Recall
that N is the set of natural numbers, Z is the set of integers, R is the set of real numbers, and pow(A)
is the set of subsets of A.

a. pow(Z) where Z is the set of all electrons in the Milky Way galaxy.

Circle one: Finite or Countably Infinite or Uncountable

Justification: The number of all electrons finite, and the power set of any finte set is also finite.
(We gave full credit to answers that interpreted Z here as Z (the integers), and explained that
pow(Z) is uncountable, so long your justification made it clear, since the question used a
confusing notation (and mispelled the name of our galaxy).

b. pow(R)

Circle one: Finite or Countably Infinite or Uncountable

Justification: R is uncountable and we know for all sets |pow(S)|> |S|, so pow(R) must be
uncountable.

c. {(a, b) | a ∈ N, b ∈ R, b = a/2}

Circle one: Finite or Countably Infinite or Uncountable

Justification: N is countably infinite. There is a bijection between S = {(a, b) | a ∈ N, b ∈ R, b =
a/2} and N: simply map each element of S = (a, b) to the element of N that matches its a value.
Since there is a bijection, the sets have the same cardinality, and S is countably infinite.
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