
University of Virginia cs2102: Discrete Mathematics 17 December 2017

Final Exam

Logical Formulas and Inference Rules

1. (Average: 9.6, Median: 10) For each candidate inference rule below, indicate if it is sound or unsound
(circle the correct answer). For the rules that are unsound, provide a counter-example to show it is
unsound. You do not need to provide any justification for the rules that are sound.

a.
P ∧Q

P

Circle one: Sound Unsound
Counter-example (if unsound):

b.
P ∧ (Q→ P)

Q

Circle one: Sound Unsound
Counter-example (if unsound): P = True, Q = False.

c.

(P ∨Q) ∧ (Q ∨R)
P ∨R

Circle one: Sound Unsound
Counter-example (if unsound):

d.
(P ∧Q) ∧ (P ∨Q)

P XOR Q

Circle one: Sound Unsound
Counter-example (if unsound): P = True, Q = True.

Well Ordering

2. (Average 8.7 / Median 10) For each set and operator below, answer if the set is well-ordered or not.
Support your answer with a brief, but clear and convincing, argument.

a. The set of integers between−100 and 100; <.

Circle one: Well-Ordered Not Well-Ordered
Justification: This is a finite set, so all of its subsets would also be finite. The minimum by < is
the least integer in the set.

cs2102: Final Exam 2

b. The non-negative rational numbers; <.

Circle one: Well-Ordered Not Well-Ordered
Justification: This set has no minimum, since you can always find a smaller non-negative
rational number by dividing it by 2.

c. The set PS = pow(S) (i.e., the set of all subsets of S) where S = {1, 2, 3}; under the comparator: ⊆.

Circle one: Well-Ordered Not Well-Ordered
Justification: Consider the subset T = {{1}, {2}}, the elements {1}, {2}. There is no element x,
such that for all other elements z ∈ T since {1} 6⊆ {2} and {2} 6⊆ {1}.

Revisiting Revisiting Exam 1

3. (Average 7.2, Median 7) Recall this question that appeared on Exam 1 and Exam 2: Explain why
the set of real numbers x where −1 ≤ x ≤ 1 is not well ordered by “<”. For each of the candidate
answers below, indicate if the answer is Good, Fixable, or Hopeless. If the answer is Fixable, explain
concisely how to fix it. If the answer is Hopeless, explain why the approach used in the answer
cannot reasonably lead to a good answer.

a. We prove using the well-ordering principle. Define the set of counterexamples,

C = {z | the set of real numbers z ≤ 1 is not well-ordered by <}.

If C is non-empty, there exists a minimum m ∈ C. By the definition of C, the set of real numbers
m ≤ 1 is not well-ordered by <. But, m is the minimum element of that set. So, we have a
contradition. Thus, by the well-ordering principle the proposition must be true.

Circle one: Good or Fixable or Hopeless

Explanation (nothing required if Good; if Fixable, explain how to fix; if Hopeless explain why):
We cannot use the well-ordering principle on a set that is not well ordered, like the real numbers
here. This also isn’t proving the given proposition. There’s no sensible way to fix this, other
than erasing it all and starting over.

b. We prove by induction on the size of the set, S.

Base case: |S|= 1. The set has one element, so that element must be its minimum. Induction case: by
the induction hypothesis, we assume that all sets R where |R| = |S|−1 have a minimum element, mr,
and show that S has a minimum element. So, there is some new element, x, such that S = R ∪ {x}.
The minimum element of S is either x, if x < mr, or mr otherwise. Thus, S has a minimum.

Circle one: Good or Fixable or Hopeless

Explanation: (nothing required if Good; if Fixable, explain how to fix; if Hopeless explain why)
This is a proof that all finite sets are well ordered!

c. Assume by contradiction that, R1, the set of real numbers between -1 and 1 is well ordered. By the
definition of a well-ordered set, all non-empty subsets of R1 have a minimum element. Consider
S = R1 − {−1}. We know S ⊂ R1 since every element of S is an element of R1. We show that

cs2102: Final Exam 3

R1 is not well-ordered by contradiction. By the assumption that R1 is well ordered, since S is a
non-empty subset of R1 it must have a minimum, m. Define m∗ = (−1 + m)/2. Then m∗ < m since
m > −1 and the average of−1 and m must be greater than−1. But m∗ ∈ S since it is a real number
between -1 and 1. This contradicts the assumption that m is the minimum of S. This contradicts
the assumption that R1 is well-ordered, since we have shown a nonempty subset of R1 that has no
minimum.

Circle one: Good or Fixable or Hopeless

Explanation: This is verbatim the answer from Exam 2.

Sets and Relations

4. (Average 8.3, Median 10) Indicate for each statement if it is valid (always true) or invalid. For invalid
statements, provide a counter-example supporting your answer.

a. For any finite sets A and B, it holds that |A| − |B| ≤ |A ∩B|.

Circle one: Valid Invalid
Counter-example (if invalid): A = {1, 2, 3, 4, 5}, B = {3}.|A| − |B|= 4, |A ∩B|= 1.

b. For any sets A, B, and C, if there is an injective ([≤ 1 arrow in]) function ([≤ 1 arrow out]) f from A
to B and an injective function g from B to C, then there exists an injective function from A to C.

Circle one: Valid Invalid
Counter-example (if invalid):

c. If A ∈ pow(B) and B ∈ pow(C), then A ∈ pow(C) .

Circle one: Valid Invalid
Counter-example (if invalid):

Induction

5. (Average 7.6, Median 8) Suppose A and B are finite sets. Prove by induction that |A×B|= |A| · |B|
where A×B is the cartesian product of A and B. (Hint: you can apply the induction over the size
of A. A good answer must clearly define the induction predicate.)

Induction predicate: P (n) = for any set A where |A|= n, |A×B|= |A| · |B|.

Base case: n = 0.

|A×B|= 0. |A| · |B|= 0 . Thus, P (0) holds.

Induction case: Prove ∀n > 0.P (n) =⇒ P (n + 1).

So, |A|= n. We define m as the size of B, |B|= m. Since we assume P (n), we know |A × B|= |A| · |B|=
n×m = k. When we add one element to A, A′ = A∪ {z}where z /∈ A. Then, |A′|= n + 1. By definition of
cartesian product, A′ ×B = (A×B) ∪ {(z, b) | ∀b ∈ B}. The size of the set of the new elements is m. So,
|A′ ×B|= |A×B|+ m = (n×m) + m = (n + 1)×m. This shows that P (n + 1) holds.

cs2102: Final Exam 4

Cardinality

6. (Average 8.9, Median 10) For each set defined below, answer if the set is “finite”, “countably infinite”,
or “uncountable” and support your answer with a convincing and concise proof. (Recall that N is
the set of natural numbers, R is the set of real numbers.)

a. pow(pow(pow(S))) where S is the set of all students in cs2102 Fall 2017.

Circle one: Finite Countably Infinite Uncountable

Proof: Since the set S is finite, pow(S) is also finite since the power set of a finite set is finite.
We can repeat this argument any number of times, so pow(pow(pow(S))) is finite.

b. {r | r = y/2x, x ∈ N, y ∈ N}

Circle one: Finite Countably Infinite Uncountable

Proof: There is one set element for each pair of natural numbers, so this is countably infinite.
We can provide a binjection between this set an N, using the same argument we used to show
the set of rationals is countably infinite.

c. {(a, b) | a ∈ N, b ∈ pow(N)}

Circle one: Finite Countably Infinite Uncountable

Proof: Since pow(N) is uncountable, and this set includes all pairs of a natural number and an
element from that set, it is uncountable.

d. {(a, b, c) | a ∈ N, b ∈ N, c ∈ N}

Circle one: Finite Countably Infinite Uncountable

Proof: This is N × N × N. We can provide a bijection to N by using the rational
number bijection twice, or by doing a three-dimensional version of this. For example,
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1),

Recursive Data Types

Consider the recursive data types, XBF (short for Xor-Based Formula) defined by:

– Base: true is an XBF.
– Base: false is an XBF.
– Constructor: for all XBF objects f1, f2, xor(f1, f2) is a XBF.

The Value of an XBF, f , should be the Boolean value of it when it is evaluated as a logical formula based
on XOR gates. To distinguish the syntactic symbols used in defining XBF s from the logical Booleans,
we use True and False to represent the Boolean true and false values, and ⊕ to represent the Boolean
operation xor.

So, for example,
Value(xor(xor(true, true), false)) = False.

cs2102: Final Exam 5

7. (Average 8.3, Median 9) Provide a precise, sensible, and complete definition of Value for all XBF
objects.

Value(true) = True
Value(false) = False
Value(xor(f1, f2)) = Value(f1)⊕ Value(f2)

8. [Excluded from exam]

Number Theory

9. (Average 8.4, Median 9) Indicate for each statement if it is True or False. Either way, provide a short
reason supporting your answer.

a. For all positive natural numbers a, b, c, it holds that gcd(a, gcd(b, c)) = gcd(gcd(a, b), c).

Circle one: True False
Short justification: gcd(a, gcd(b, c)) = gcd(a, b, c) = gcd(gcd(a, b), c).

b. N5 is a field if we use (+ mod 5) for addition and (×mod 5) for the multiplication operations.

Circle one: True False
Short justification:
5 is a prime, the additive identity is 0, the multiplicative identity is 1. Every element except 0
has an multiplicative inverse. Other properties also hold.

c. There exist (distinct) primes p < q < r such that pr = q2.

Circle one: True False
Short justification:
If pr = q2 = n and p, q, r are all prime, then n wouhd have two factoring into primes which is
impossible.

Program Correctness

We call a list p0, . . . , pn a non-decreasing list, if p0 ≤ p1 ≤ . . . pn. Consider the Python program below,
that returns True if and only if the elements in the input list are non-decreasing. We assume that p is
a non-empty list of natural numbers. (Note: this is corrected to include the -1 that was missing in the
original exam, and the i < len(p) - 1 condition that was missing from G.)

def non_dec(p):
i = 0
q = p[0]
g = True
while i < len(p) - 1:

i = i + 1

cs2102: Final Exam 6

if p[i] < q:
g = False

q = p[i]
return g

10. (Average 9.0, Median 9) Complete the definition of the state machine, Mg = (S, G, q0), below that
models non_dec.

S = {(i, q, g) | i ∈ N, q ∈ N, g ∈ {True, False}}
G = {(i, q, g)→ (i′, q′, g′) |

i, i′, q, q′ ∈ N, g, g′ ∈ {True, False}
∧ i < len(p) - 1
∧ i′ = i + 1
∧ q′ = p[i′]

∧ g′ =
False if p[i′] < q

g otherwise

}
q0 = (0, p[0], True)

11. (Average 7.5, Median 8) Prove that for any input that is a finite non-empty list of natural numbers,
the state machine Mg always terminates, and the final state is a state where the value of g is True
if and only if the input list is non-decreasing. Note that you need to do the following: (a) Prove
that the program ends. (b) Formally define a property P and show that P for states of the machine
above and prove that P is a preserved invariant. (c) Show that P holds for the initial state. (d) Show
that if P holds for a final state, then that state will have the correct answer.

(a) Termination: In q0, i = 0. Each transition increases the value of the i part of the state by one, because
all transistion rules include i′ = i + 1. There are no transitions from states where i ≥ len(p)− 1. So,
after len(p) steps, the meachine must terminate. Since the input p must have finite length, this
proves termination.

(b) Preserved Invariant : P (q = (i, q, g)) ::= g = the sequence p[0], p[1], ..., p[i] is non-decreasing,
q = p[i].

P is a preserved invariant: When P (m) holds, if p[0:m+1] is non-decreasing, g is True. (Case
1) If p[m+1] >= p[m], p[0: m+1] is non-decreasing. By the transition graph g′ = g = True.
Since q = p[i] (by P), p[m+1] ≥ q, p[0: m+1] is non-decreasing and g′ = g = True. (Case 2) If
p[m+1] < p[m], then p[0: m+1] is not non-decreasing. Since p[m+1] < q, g′ = False, and the
invariant is preserved.

(Case 3) If p[0:m] is not non-decreasing, g is False. Then, p[0:m+1] is also not non-decreasing. By
the transition graph, g′ must be False in the next state, so P is preserved.

For all cases, q = p[i] is preserved, since q′ = p[i′] and i′ = i + 1.

cs2102: Final Exam 7

(c) Initially True: P (0) says the sequence of just one element is non-decreasing, which must be true.
In q0, g = True, so the invariant is preserved.

(d) Final state: In the final state, i = len(p) - 1. Hence, P (f) says that g = the sequence p[0],
p[1], . . . , p[len(p) - 1] is non-decreasing. Thus, the preserved invariant implies the desired
correctness property for the full input array.

Statistics

Average: 82.9
Median: 85.5

Anything else you want us to know?

Here’s a few favorites:

“the funny video on well ordering still in my head”

“The TAs for this class are amazing.”

“Also, I have watched the PSO video from Devin Kim too many times. It’s a great video.”

“Throughout this semester, I grew tremendously from this class. cs2102 has taught me how to communicate
well in teams, especially for problem sets, and even, in my own ROMANTIC BIJECTIVE relationship!”

“I admit that it was hard for me to see the relevance of discrete math in the first half of the semester. But as I
learned about trees and recursion in CS and I started taking on a few internship interviews, I realized that
the logic of discrete math is really really helpful. I’ve been appreciating it more and more as the semester
goes on.”

“I appreciate your outlook on grading as it allows me to just focus on absorbing the material. That is, unless
I do poorly, in which case I hate your outlook on grading.”

“I didn’t eat breakfast before this exam, and now I’m rally mahMOODY.”

“I loved the last lecture when Prof. Evans said a CS education is meant to take the “magic” out of how
computers work”

“This class has been surprisingly enjoyable and I love when you wear Hawaiian shirts with your red shoes.”

“I realized I had never faced a challenge like this in my academic life. But I decided I was not going to let
Discrete win this challenge nor win this fight.”

“This class could easily be the most abstract thing in the world, but it felt at least somewhat grounded in
reality.”

“Thank you for an amazing semester and your exquisite, foolproof guide to not getting bamboozled while
trick-or-treating!”

“This class in a nutshell: the empty set is well ordered.”

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 UVA cs2102 Course Staff

https://uvacs2102.github.io/

	Logical Formulas and Inference Rules
	Well Ordering
	Revisiting Revisiting Exam 1
	Sets and Relations
	Induction
	Cardinality
	Recursive Data Types
	Number Theory
	Program Correctness
	Statistics
	Anything else you want us to know?

