
University of Virginia cs2102: Discrete Mathematics 9 November 2016

Exam 2

Read this page and fill in your name, pledge, and email ID now.

Name:
Email ID:

For this exam, you must work alone. You are not permitted to obtain help from people other than asking
clarifying questions of the course staff. You are not permitted to provide help to others taking the exam.
You may not use any resources other than the one page of notes you prepared.

Sign below to indicate that you understand these expectations and can be trusted to behave honorably:

Signed:

The exam has 8 questions. For each question, there is ample space provided to hold an excellent answer.
If you need more space, you can use the backs of pages, but include clear markings and arrows to indicate
the answer that should be graded. We will assume anything not inside the answer space or clearly marked
from it, is your scratch work that should not be considered in scoring your answers.

Do not open past this page until instructed to do so.

cs2102: Exam 2 2

Revisiting Exam 1

1. Prove by induction that every finite non-empty subset of the real numbers contains a least element,
where an element x ∈ S is defined as the least element if ∀z ∈ S− {x}. x < z. (Note: you should
not just assume all finite sets are well ordered for this question.)

cs2102: Exam 2 3

State Machines and Invariants

2. For each of the statements below, indicate if the implication stated is valid (must always be true) or
invalid (may be false). Provide a short justification supporting your answer.

a. If M = (S, G : S× S, q0 ∈ S) is a state machine where G is a total surjective function, all states in S
are reachable.

Circle one: Valid or Invalid

Justification:

b. If P(q) is a preserved invariant for machine M = (S, G, q0), and r is a reachable state in M, P(r) is
true.

Circle one: Valid or Invalid

Justification:

c. If M = (S, G, q0) is a state machine and R is the set of reachable states in M,

S = R =⇒ (G ∪ (q0 → q0)) is an injective function.

Circle one: Valid or Invalid

Justification:

cs2102: Exam 2 4

Stable Matching

The state machine model of the Gale-Shapley algorithm from Class 15 and Problem Set 7 is shown
(without modification) below.

S = {(pairings, proposals) |
pairings = {(a, b) | a ∈ A, b ∈ B, no duplicate occurences of a or b in pairings},
proposals = (r1, r2, · · · , rn), 0 ≤ ri ≤ n}

G = {(pairings, proposals = (r1, r2, · · · , rn))→ (pairings′, proposals′) |
i ∈ {1, · · · , n}, ri < n
∀b ∈ B. (ai, b) /∈ pairings

bx ::= the ri-ranked choice for ai

proposals′ = (r1, · · · , ri + 1, · · · , rn)

pairings′ =

pairings∪ {(ai, bx)} ∀az ∈ A. (az, bx) /∈ pairings (Case 1)

pairings∪ {(ai, bx)} − {(az, bx)} ∃az ∈ A. (az, bx) ∈ pairings∧ az ≺bx ai (Case 2)

pairings otherwise (Case 3)

}
q0 = (pairings = {}, proposals = (0, 0, . . . , 0))

3. For each of the following predicates, answer whether or not it is a preserved invariant for M =
(S, G, q0) as defined above, and provide a brief justification supporting your answer. We use a, a1, a2
to denote elements of A, and b, b1, b2 to denote elements of B.

a. P(q = (pairings, proposals)) := pairings contains a pair including a.

Circle one: Preserved Invariant or Not Preserved

Justification:

b. P(q = (pairings, proposals)) := pairings contains a pair including b.

Circle one: Preserved Invariant or Not Preserved

Justification:

cs2102: Exam 2 5

c. P(q = (pairings, proposals = (r1, r2, · · · , rn))) := (r1 + r2 + · · · + rn) > 7.

Circle one: Preserved Invariant or Not Preserved

Justification:

d. P(q = (pairings, proposals = (r1, r2, · · · , rn))) := |pairings|≤ (r1 + r2 + · · · + rn).

Circle one: Preserved Invariant or Not Preserved

Justification:

For reference, here is the state machine repeated without change from previous page:

S = {(pairings, proposals) |
pairings = {(a, b) | a ∈ A, b ∈ B, no duplicate occurences of a or b in pairings},
proposals = (r1, r2, · · · , rn), 0 ≤ ri ≤ n}

G = {(pairings, proposals = (r1, r2, · · · , rn))→ (pairings′, proposals′) |
i ∈ {1, · · · , n}, ri < n
∀b ∈ B. (ai, b) /∈ pairings

bx ::= the ri-ranked choice for ai

proposals′ = (r1, · · · , ri + 1, · · · , rn)

pairings′ =

pairings∪ {(ai, bx)} ∀az ∈ A. (az, bx) /∈ pairings (Case 1)

pairings∪ {(ai, bx)} − {(az, bx)} ∃az ∈ A. (az, bx) ∈ pairings∧ az ≺bx ai (Case 2)

pairings otherwise (Case 3)

}
q0 = (pairings = {}, proposals = (0, 0, . . . , 0))

cs2102: Exam 2 6

Recursive Data Types

Consider the recursive data type, cist, defined by:

– Base: null is a cist.
– Constructor: for all cist object, p, expand(p) is a cist.

The size of a cist, p, is the number of times it takes to expand starting from null to produce that cist. So,
for example, size(expand(expand(expand(null)))) = 3.

4. Provide a precise and complete definition of size for cist all objects.

cs2102: Exam 2 7

Define the merge of two cists as:

merge(p1, p2) =

{
p2 p1 = null

expand(merge(q, p2)) p1 = expand(q)

5. Prove that for any two cists, p1 and p2,

size(merge(p1, p2)) = size(p1) + size(p2).

cs2102: Exam 2 8

Consider the Python program below, that returns the greatest element of the input list p. You may assume
p is a non-empty list of natural numbers.

def max_element(p):
x = p[0]
i = 1
while i < len(p):

if p[i] > x:
x = p[i]

i = i + 1
return x

6. Complete the definition of the state machine below that models max_element.

S = {(x, i) | x, i ∈N}
G = {(x, i)→ (x′, i′) |

i < len(p)∧
i′ = ∧
x′ = if p[i] > x
x′ = otherwise

q0 =

7. Prove that the state machine (from problem 6) always terminates.

cs2102: Exam 2 9

8. Prove that max_element, as modeled by the state machine from Problem 6, always returns the
maximum value of that list.

End of Exam Questions (last page is optional feedback).

cs2102: Exam 2 10

Optional Feedback

This question is optional and will not negatively effect your grade.

Do you feel your performance on this exam will fairly reflect your understanding of the course material
so far? If not, explain why. (Feel free to provide any other comments you want on the exam, or the course
more broadly, here.)

Are there any things you hoped to learn in cs2102 that we haven’t done yet?

Score:

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 David Evans

https://uvacs2102.github.io/

	Revisiting Exam 1
	State Machines and Invariants
	Stable Matching
	Recursive Data Types
	Optional Feedback

