
University of Virginia cs2102: Discrete Mathematics 14 December 2016

Final Exam - Solutions

Logical Formulas and Inference Rules

1. For each candidate inference rule below, indicate if it is sound or unsound (circle the correct
answer). For the rules that are unsound, provide a counter-example to show it is unsound. You do
not need to provide any justification for the rules that are sound.

a.
P
Q

(3) Unsound. Counter-example: P = True, Q = False.

b.
(P ∧Q) ∨ (P ∧Q)

P

(2) Sound. If P is False, there is no way to make the antecedent true since each clause is a
conjunction that includes P .

c.
(P ∧Q) ∧ (P ∧Q)

P

(2) Sound. If P is False, there is no way to make the antecedent true since each clause is a
conjunction that includes P .

d.
(P =⇒ Q) ∧Q

P

(3) Unsound. Counter-example: P = False, Q = True.

cs2102: Final Exam - Solutions 2

Well Ordering

2. For each set and operator below, answer if the set is well-ordered or not. Support your answer with
a brief, but clear and convincing, argument.

a. the even natural numbers; <.

(2) Well-Ordered. The even natural numbers is a subset of N, which we know is well-ordered by <, and
every subset of a well-ordered set is well-ordered.

b. the non-negative real numbers; <.

(3) Not Well-Ordered. The subset S−{0} has no least element, so the set is not well-ordered. We could
prove this by contradiction. Assume (to get a contradiction) that there is a minimum element m.
Since m is a non-negative real number, it is some sequence of digits, m1m2m3 The number
0m1m2m3 . . . is a real number less than m. Hence, we have a contradiction and the set is not
well-ordered. (Not necessary to prove this for full credit, but +2 bonus for a proof.)

c. the empty set; <.

(2) Well-Ordered. All subsets of the empty set have a least element, since there are no subsets of the
empty set.

d. pow(N); compare(S, T) := |S|< |T |

(3) Not Well-Ordered. Here’s an example of a subset of pow(N) that is not well-ordered by the compar-
ator: {s1 = {0}, s2 = {1}}. Since the comparison is based on the sizes, there is no least element:
neither |s1|< |s2| or |s2|< |s1|.

cs2102: Final Exam - Solutions 3

Sets and Relations

3. Indicate for each statement if it is valid (always true) or invalid. For invalid statements, provide a
counter-example supporting your answer.

a. For any sets A and B, |A ∪B| ≤ |A|+ |B|.

(2) Valid. |A ∪B|= |A|+|B|−|A ∩B|≤ |A|+|B|.

b. For any sets A and B, (∀a ∈ A. a ∈ B) =⇒ A ⊆ B.

(2) Valid. Follows directly from the definition of⊆.

c. For any sets A and B, there exists a total ([≥ 1 arrow out]), injective ([≤ 1 arrow in]) relation R
between A and A−B.

(3) Invalid. Counter-example: A = B. Then, A−B = ∅, so there is no way to have arrows out of A in
R.

d. For any sets A and B, B ∈ pow(A) =⇒ |B|< |A|.

(3) Invalid. A ∈ pow(A).

cs2102: Final Exam - Solutions 4

Induction

4. Prove by induction that every finite non-empty subset of the real numbers contains a least element,
where an element x ∈ S is defined as the least element if ∀z ∈ S − {x}. x < z. (Note: you should
not just assume all finite sets are well ordered for this question.)

(This question was on Exam 2, Exam 1, and Problem Set 5, with minor modifications, and you were
notified in the Exam 2 solutions that you would see it again on the final. So, everyone should have gotten
a good proof for this!)

Our induction predicate is:

P (n) ::= all sets of real numbers of size n have a least element.

We what to show this holds for all non-empty sets, n ∈ N+.

Base case: n = 1. Consider a set of real numbers with size one: {x}. It has only a single element, x, so that
element will be the minimum.

Inductive step: ∀m ∈ N+. P (m) =⇒ P (m + 1). Assume all sets of real numbers of size m have a least
element. Every set of size m+1, S′, is the result of adding a new element, q, to a set of size m: S′ = S∪{q},
q /∈ S. By the inductive hypothesis, we know S (size m) has a least element, w. There are two possibilities
for the new element: (1) q < m. Then, minimum(S′) = q. or (2) q > m. Then, minimum(S′) = m. In
both cases, the minimum of S′ is well defined.

By induction, we have proven P (n) holds for all n ∈ N+.

cs2102: Final Exam - Solutions 5

State Machines

5. Consider the state machine, M1 = (S, G, q0) below:

S = {(a, b) | a, b ∈ N}
G = {(a, b)→ (a′, b′) | a, a′, b, b′ ∈ N ∧ a + b = a′ + b′}
q0 = (0, 0)

a. Describe the reachable states for M1.

(4) There is only one reachable state: (0, 0). Since the transitions rule requires a′+ b′ = a + b, if a + b = 0
(as it does for state q0 = (0, 0)), there are no other natural numbers that some to 0.

(If you misread the N as Z, which is a more sensible state machine, then the reachable states are the
states (a,−a) for all a ∈ Z, which was also worth full credit.)

For each of the following predicates, answer whether or not it is a preserved invariant for M1 as defined
above, and provide a brief justification supporting your answer.

b. P (q = (a, b)) := a > b

(3) Not Preserved. There is a transition from (3, 2)→ (1, 4), but the property is satisfied by (3, 2) but
not by (1, 4).

c. P (q = (a, b)) := a + b is odd

(3) Preserved. The transitition rule ensures a′ + b′ = a + b, so if a + b is odd, so is a′ + b′.

cs2102: Final Exam - Solutions 6

Cardinality

6. For each set defined below, answer is the set if countable or uncountable and support your answer
with a convincing and concise proof. (Recall that N is the set of natural numbers, R is the set of real
numbers.)

a. set of all subsets of students in cs2102

(2) Countable. The number of students in cs2102 is finite, so the size of its powerset of also finite. All
finite sets are countable.

b. {(a, b)|a, b ∈ N}

(3) Countable. This set is the same as N× N, which we already proved is countable. Alternately, you
should show a bijection between N and the set:

0↔ (0, 0), 1↔ (0, 1), 2↔ (1, 0), 3↔ (1, 1), 4↔ (1, 2), . . .

dove-tailing through the pairs similarly to the proof that the rationals are countable.

c. {(a, b)|a ∈ N, b ∈ R}

(2) Uncountable. Since R is uncountable, any sequence that includes an element from R must also be
uncountable.

d. the set of all Turing Machines that accept no strings

(3) Countable. This is a subset of the set of all Turing Machines, which we know is countable. Any
subset of a countable set must be countable.

cs2102: Final Exam - Solutions 7

Proofs

Consider the Take-Away game: start with n sticks; at each turn, a player must remove 1 or 2 sticks. The
player who takes the last stick wins.

7. Prove that Player 1 has a winning strategy for a two-player game of Take-Away where Player 1 moves
first if the initial number of sticks is n is not divisible by 3.

We prove using strong induction. The predicate is:

P (n) ::= Player 1 has a winning strategy for a Take-Away game starting with n sticks, if n is not divisible by 3.

We want to show P (n) holds for all positive natural numbers.

Base cases: P (1) and P (2). Player 1 can win by removing 1 (for n = 1) stick or 2 (for n = 2) sticks on her
first move.

Inductive case: ∀m ∈ N, m > 2.∀k ≤ m.P (k) =⇒ P (m + 1).

We have three cases to consider:

(1) m = 3n. To show P (3n + 1), Player 1 can remove 2 sticks, leaving 3n− 1 = 3(n− 1) + 2 sticks. Since
this is not divisible by three, by the strong induction hypothesis, we know P (3(n− 1) + 2) is true, so
this is a winning strategy, showing P (m + 1) for this case.

(2) m = 3n + 1. To shows P (3n + 2), Player 1 can remove 1 stick, leaving 3n + 1 sticks. Since this is not
divisible by 3, by the strong induction hypothesis, we know P (3n + 1) is true, so this is a winning
strategy.

(3) m = 3n + 2. To show P (3n + 3), we observe that 3n + 3 is divisible by 3. Hence, P (3(n + 1)) holds,
since the predicate only says there needs to be a winning strategy then n is divisible by 3.

The three cases show P (m + 1) holds in all cases, proving P (n) holds for all n ∈ N+.

cs2102: Final Exam - Solutions 8

Program Correctness

Consider the Python program below, that returns True if and only if none of the elements of the input list
are below 5. You may assume p is a non-empty list of natural numbers.

def all_good(p):
i = 0
good = True
while i < len(p):

if p[i] < 5:
good = False

i = i + 1
return good

(Note: this was from the program used to evaluate grades, giving a data point if all the problem sets were
at least at the “green star” level. The actual Python code I used is all([ps >= 5 for ps in stud.ps])
which is more concise, but should be equivalent to the code above.)

8. Complete the definition of the state machine, Mg = (S, G, q0), below that models all_good.

S = {(i, g) | i ∈ N, g ∈ {True, False}}
G = {(i, g)→ (i′, g′) |

i, i′ ∈ N, g, g′ ∈ {True, False}
∧ i < len(p)

∧ i′ = i + 1

∧ g′ =
False if p[i] < 5

g otherwise

}
q0 = (0, True)

cs2102: Final Exam - Solutions 9

9. Prove that for any input that is a finite list of natural numbers, the state machine Mg always
terminates, and the final state is a state where the value of g is True if and only if the input list
contains no elements with value below 5.

First, we prove termination. All the transitions must satisfy i < len(p), so there are no transitions from
any state where i ≥ len(p). Since len(p) is finite, the initial state has i = 0, and all transitions include
i′ = i + 1 which increases i by 1, the machine must eventually reach a state where i = len(p). Since that
state has no outgoing edges, the machine terminates.

To prove correctness, we use the invariant principle. The preserved invariant is:

P (q = (i, g)) := g =
i−1∧
k=0

p[k] ≥ 5.

That is, the value of g is True if and only fi all p[i] values below i are not less than 5.

To prove correctness using the invariant principle, we need to show (1) P (q0) is true, (2) P (·) is a preserved
invariant, and (3) P (qt) =⇒ desired correctness property for all terminating states qt.

(1) P (q0) is true. q0 = (0, True). This is true since there are no clauses in the
∧

when i = 0, so it means
g = True, satisfying P (q0).

(2) P (·) is a preserved invariant. We need to show P (i, g) =⇒ P (i′, g′) for all states. By the transition
rules we have i′ = i + 1 and two cases for g′:

– Case 1. When p[i] < 5, we have g′ = False. The predicate for (i′, g′) is

g′ =
i′−1∧
k=0

p[k] ≥ 5 =
i∧

k=0
p[k] ≥ 5.

Since p[i] < 5, the
∧

is False, and so is g′.

– Case 2. When p[i] ≥ 5, we have g′ = g. The predicate for (i′, g′) is

g′ =
i′−1∧
k=0

p[k] ≥ 5 =
i−1∧
k=0

p[k] ≥ 5 ∧ p[i] ≥ 5.

Since the new clause is true, the value of the
∧

is whatever it was before, which, by the inductive
hypothesis, is g.

(3) P (qf) =⇒ g is True if and only if the input list contains no elements with value below 5. In the
termination sub-proof, we showed the machine terminates in a state where i = len(p). So, qf =
(len(p), gf).

cs2102: Final Exam - Solutions 10

Recursive Data Types

Define a BalancedTree as:

– Base case: null ∈ BalancedTree.

– Constructor case: if t1, t2 ∈ BalancedTree and count(t1) = count(t2) then node(t1, t2) ∈ BalancedTree.

where count is defined for all BalancedTree objects as:

count(t) :=
{

0 t = null

1 + count(t1) + count(t2) t = node(t1, t2)

The left and right operations are defined by:

left(node(t1, t2)) := t1

right(node(t1, t2)) := t2

10. Explain why left is not a total function for BalancedTree objects domain.

To be a total function, it must have an arrow out for every domain element. But, left is not defined for
null, so is not a total function.

11. Prove that for all non-null BalancedTree objects, t, count(left(t)) = count(right(t)).

To prove this, we use structural induction. The induction predicate is:

P (t) := count(left(t)) = count(right(t)).

We need to show P (t) holds for all non-null BalancedTree objects.

Base objects: Since the base object is null, there is nothing to do for the base objects since P (t) only needs
to hold for non-null trees.

Constructor case: P (t) for t = node(t1, t2). By the inductive hypothesis, we can assume P (t1) and P (t2).
The constructor rule requires count(t1) = count(t2), so this follows directly.

cs2102: Final Exam - Solutions 11

Turing Machines

12. Prove that there exists a Turing Machine that (1) accepts an infinite number of inputs and (2) does
not terminate on an infinite number of inputs.

We prove this by constructing a Turing Machine that satisfies the property. Here’s one (of infinitely many
possible) example:

M = (S = {0, 1},
T = {(0, 0)→ (1, 0, R),

(1, 0)→ (1, 0, R),
(1, 1)→ (1, 1, R),
(1, -)→ (1, -, Halt),
(0, 1)→ (0, 1, L),

q0 = 0, qAccept = {1})

The machine accepts all strings that start with a 0, moving right through the input in state 1. For any
string that starts with a 1, the machine runs forever without terminating (recall that if the machine would
move left past the left edge it remains in the same position). There are infinitely many strings of both
type, so this satisfies the property.

cs2102: Final Exam - Solutions 12

Countable Sets are Well-Ordered

13. Prove that all countable sets are well-ordered.

As we showed in Problem Set 9, if a non-empty set C is countable, there is a total surjective function from
N to C. This provides a simple way to order C according to the first element of N that maps to C. This
covers all the non-empty sets; to cover all countable sets, we also need to cover the empty set (which
is indeed countable, since it is finite). The empty set is also well-ordered, since the definition of being
well-ordered is that all non-empty subsets of the set have a least element. Since the empty set has no
non-empty subsets, this is vacuously true.

cs2102: Final Exam - Solutions 13

Optional Guidance

Anything else you want me to know?

A few favorite answers, shared anonymously:

“I apologize for never waking up my friend when he slept during class sometimes. He was in 21 credits, so I
felt bad for him. Didn’t mean any disrespect.”

“also, your proof of why the egg came before the chicken has changed my outlook on life as a whole. I think.”

“My English teacher told me in high school that I wasn’t comfortable enough with facing a challenge and
struggling to stick with engineering, but after this class I think I have developed a new kind of resiliency to
problem solving that will help me succeed at UVA and throughout my life.”

“the class wasn’t actually as bad as everyone says it is”

“The few times I understood what was happening, I was awestruck”

“I very much enjoyed your grading outlook. At first I found it stressful but over time it helped me focus less
on grades and more on learning. I quite like the material we’ve learned now. I don’t think I would have if
we have followed the traditional way of grading. [9 gold stars]”

“PS. RIP Harambe”

“I’m really sick of the Harambe jokes.”

Grading Summary

Everyone got 20 points for the cover page, and the other 13 questions were graded where a good answer
was worth 10 points (excellent answers were occasionally worth more). So, there are 150 points available
for all good answers.

Several of the questions were quite difficult, and very few people did well on the Turing Machine questions
(which is understandable since we didn’t have a problem set on these), so the average score was 116.5.

The pass rates by question are:

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13
Great (≥ 10) 31% 11% 34% 45% 25% 27% 11% 49% 7% 15% 18% 4% 20%
Passable (≥ 8) 46% 22% 50% 53% 35% 51% 30% 53% 37% 15% 29% 6% 27%
Okay (≥ 6) 53% 34% 53% 57% 46% 57% 51% 56% 50% 18% 37% 19% 47%

https://uvacs2102.github.io/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 David Evans

https://uvacs2102.github.io/

	Logical Formulas and Inference Rules
	Well Ordering
	Sets and Relations
	Induction
	State Machines
	Cardinality
	Proofs
	Program Correctness
	Recursive Data Types
	Turing Machines
	Countable Sets are Well-Ordered
	Optional Guidance
	Grading Summary

