Class 24: Halting Problems
Schedule
Problem Set Omega is due on Sunday, 4 December or Tuesday, 6 December (see problem set for details). It is not like the others, and counts as a “bonus” optional assignment.
The final exam is scheduled by the registrar for Saturday, 10 December, 9am-noon in our normal classroom. See the Final Exam Preparation handout for more information on the final and some practice problems.
Links
Ali G on Science (possibly offensive, watch at your own risk!)
Numberphile on the Halting Problem (HT: John Fry)
Turing Machine Definitions
$$ TM = (S, T \subseteq S \times \Gamma \rightarrow S \times \Gamma \times \text{\em dir}, q0 \in S, q{Accept} \subseteq S) $$
$S$ is a finite set (the “in-the-head” processing states)
$\Gamma$ is a finite set (symbols that can be written on the tape)
$\text{\em dir} = { \text{\bf Left}, \text{\bf Right}, \text{\bf Halt} }$ is the direction to move on the tape.
An execution of a Turing Machine, $TM = (S, T \subseteq S \times \Gamma \rightarrow S \times \Gamma \times \text{\em dir}, q0 \in S, q{Accept} \subseteq S)$, is a (possibly infinite) sequence of configurations, $(x_0, x_1, \ldots)$ where $x_i \in \text{\em Tsil} \times S \times \text{\em List}$ (elements of the lists are in the finite set of symbols, $\Gamma$), such that:
- $x_0 = (\text{\bf null}, q_0, \text{\bf input})$
- and all transitions follow the rules (need to be specified in detail).
Recognizing Languages
A Turing Machine, $M = (S, T \subseteq S \times \Gamma \rightarrow S \times \Gamma \times \text{\em dir}, q0 \in S, q{Accept} \subseteq S)$, accepts a string x, if there is an execution of M that starts in configuration $(\text{\bf null}, q_0, x)$, and terminates in a configuration, $(l, q_f, r)$, where $qf \in q{Accept}$.
A Turing Machine, $M = (S, T \subseteq S \times \Gamma \rightarrow S \times \Gamma \times \text{\em dir}, q0 \in S, q{Accept} \subseteq S)$, recognizes a language $\mathcal{L}$, if for all strings $s \in \mathcal{L}$, $M$ accepts $s$, and there is no string $t \notin L$ such that $M$ accepts $t$.
A Turing Machine, $M = (S, T \subseteq S \times \Gamma \rightarrow S \times \Gamma \times \text{\em dir}, q0 \in S, q{Accept} \subseteq S)$, decides a language $\mathcal{L}$, if for all strings $s \in \mathcal{L}$, $M$ accepts $s$, and for all strings $t \notin L$, $M$ terminates in a non-accepting state.
A language $\mathcal{L}$ is Turing-recognizable if there is some Turing Machine that recognizes it. A language $\mathcal{L}$ is Turing-decidable if there is some Turing Machine that decides it.
Are all Turing-decidable languages Turing-recognizable?
##
Are all Turing-recognizable languages Turing-decidable?
Undecidable Languages
$$ \text{SelfRejecting} := { w \in \Sigma^{*} \, | \, w \notin \mathcal{L}(M(w)) } $$ where $M(w)$ is the Turing Machine described by string $w$ if $w$ describes a valid Turing Machine, otherwise, a $M(w)$ is a machine that rejects all inputs.
Is there a $M{SR} = M(w{SR})$ that recognizes the language $\text{SelfRejecting}$?
#
$$ A_{TM} = { (w, x) \, | \, M(w)\ \text{accepts on input}\ x } $$
Is the language $A_{TM}$ Turing-recognizable?
#
Is the language $A_{TM}$ Turing-decidable?
#
#
#
$$ Halts_{TM} = { (w, x) \, | \, M(w)\ \text{terminates on input}\ x } $$
#
def paradox():
if halts('paradox()'):
while True:
pass