Discrete Mathematics

Class 15: Recursive Data Types


Schedule

You should read MCS Chapter 7 this week.

Problem Set 6 is due 20 October (Friday) at 6:29pm.

Python code from class and list definitions: pairs.py

Proving Correctness

def slow_power(a, b):
   y = 1
   z = b
   while z > 0:
      y = y * a
      z = z - 1
   return y

We model the Python program with a state machine:

$S ::= \mathbb{N} \times \mathbb{N}$
$G ::= { (y, z) \rightarrow (y \cdot a, z - 1) \, | \, \forall y, z \in \mathbb{N}^{+}}$
$q_0 ::= (1, b)$

It is important to remember this is a model. It does not capture many important aspects of execution of a real Python program. In particular, it only models inputs in $\mathbb{N}$, when the actual inputs could be other types in PYthon. It also assume all math opderations work mathematically, not Pythonically.

To prove partial correctness, we show $P(q = (y, z)) := y = a^{b-z}$ is a preserved invariant. Then, we show that it holds in state $q_0$. Finally, we show that in all final states, $y = a^b$.

Invariant is Preserved: We need to show that $\forall q \in S . \forall t \in S . (q, t) \in G \implies P(q) \implies P(t)$.

  1. $q = (y, z)$. $P(q = (y, z))$: $y = a^{b-z}$.
  2. If there is an edge from $q$ to $t$, that means $t = (y \cdot a, z-1)$ and $z \ge 1$ since this is the only edge from $q$ in $G$.
  3. We show $P(t = (y \cdot a, z-1))$ holds by multiplying both sides of $P(q)$ by $a$: $$ya = (a^{b -z}) \cdot a = a^{b - z + 1} = a ^{b - (z - 1)}.$$

Invariant holds in $q_0$: $q_0 = (1, b)$. So, we need to show $P(q_0 = (1, b))$: $1 = a^{b - b}$. This holds since $a^{0} = 1$.

Final states: All states where $z \ge 1$ have an outgoing edge, but no states where $z = 0$ do. So, the final states are all of the form $(\alpha, 0)$. If a final state is reachable from $q_0$, the invariant must hold since we proved it is preserve. Hence, in the final state $(\alpha, 0)$ we know $\alpha = a^{b}$.

This proves partial correctness: if the program terminates, it terminates in a state where the property ($y = a^b$ is satisfied). To prove total correctness we also need to know the execution eventually reaches a final state.

We prove this by showing that from any initial state $q_0 = (1, b)$, the machine will reach a final state $q_f = (y, 0)$ in $b$ steps. The proof in class used the Well Ordering Principle. You could also prove this using regular Induction.

Pairs

What is the difference between scalar data and compound data structures?

Definition. A $\text{\em Pair}$ is a datatype that supports these three operations:
\begin{quote} $\text{\em make_pair}: \text{\em Object} \times \text{\em Object} \rightarrow \text{\em Pair}$
$\text{\em pair_first}: \text{\em Pair} \rightarrow \text{\em Object}$\
$\text{\em pair_last}: \text{\em Pair} \rightarrow \text{\em Object}$\
\end{quote} where, for any objects $a$ and $b$, $\text{\em pair_first}(\text{\em make_pair}(a, b)) = a$ and $\text{\em pair_last}(\text{\em make_pair}(a, b)) = b$.

def make_pair(a, b):
    def selector(which):
        if which:
            return a
        else:
            return b
    return selector

def pair_first(p):
    return p(True)

def pair_last(p):
    return p(False)

Lists

Definition (1). A List is either (1) a Pair where the second part of the pair is a List, or (2) the empty list.

Definition (2). A List is a ordered sequence of objects.